Reliable numerical methods for polynomial matrix triangularization

نویسندگان

  • Didier Henrion
  • Michael Sebek
چکیده

Numerical procedures are proposed for triangularizing polynomial matrices over the eld of polynomial fractions and over the ring of polynomials. They are based on two standard polynomial techniques: Sylvester matrices and interpolation. In contrast to other triangularization methods, the algorithms described in this paper only rely on well-worked numerically reliable tools. They can also be used for greatest common divisor extraction, polynomial rank evaluation or polynomial null-space computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix computation of subresultant polynomial remainder sequences in integral domains

We present an impr{wed variant of the matrix-triangularization subresultant prs method [1] fi~r the computation of a greatest comnum divi~w of two polynomials A and B (of degrees m and n, respectively) along with their polynomial remainder ~quence. It is impr~wed in the sense that we obtain complete theoretical results, independent {}f Van Vleck's theorem [13] (which is not always tnle [2, 6]),...

متن کامل

Some properties of band matrix and its application to the numerical solution one-dimensional Bratu's problem

A Class of new methods based on a septic non-polynomial spline function for the numerical solution one-dimensional Bratu's problem are presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Associated boundary f...

متن کامل

Householder triangularization of a quasimatrix

A standard algorithm for computing the QR factorization of a matrix A is Householder triangularization. Here this idea is generalized to the situation in which A is a quasimatrix, that is, a “matrix” whose “columns” are functions defined on an interval [a,b]. Applications are mentioned to quasimatrix leastsquares fitting, singular value decomposition, and determination of ranks, norms, and cond...

متن کامل

Towards Computing a Gröbner Basis of a Polynomial Ideal over a Field by Using Matrix Triangularization

We give first results of our investigation of the connection between Gröbner bases computation and Gaussian elimination. We show that for every input set F of polynomials a matrix of shifts of those polynomials exists such that by triangularizing this matrix we obtain a Gröbner basis of F .

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 1999